5,213 research outputs found

    QUALITATIVE ANALYSIS ON THE VAPOR LOCKING VEHICLE BRAKE SYSTEMS

    Get PDF
    ArticleJournal of the Faculty of Textile Science and Technology, Shinshu University. Ser. B, Engineering 17: 1-15(1986)departmental bulletin pape

    STUDIES ON BRAKING-WIND UP VIBRATIONS OF MOTOR VEHICLE AND ITS SKIDMARKS

    Get PDF
    ArticleJournal of the Faculty of Textile Science and Technology, Shinshu University. Ser. B, Engineering 15: 1-11(1982)departmental bulletin pape

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Explaining the magnetic moment reduction of Fullerene encapsulated Gadolinium through a theoretical model

    Full text link
    We propose a Theoretical model accounting for the recently observed reduced magnetic moment of Gadolinium in fullerenes. While this reduction has been observed also for other trivalent rare-hearth atoms (Dy3+, Er3+, Ho3+) in fullerenes and can be ascribed to crystal field effects, the explanation of this phenomena for Gd3+ is not straightforward due to the sphericity of its ground state (S=7/2, L=0). In our model the momentum lowering is the result of a subtle interplay between hybridisation and spin-orbit interaction

    Glueball mass from quantized knot solitons and gauge-invariant gluon mass

    Full text link
    We propose an approach which enables one to obtain simultaneously the glueball mass and the gluon mass in the gauge-invariant way to shed new light on the mass gap problem in Yang-Mills theory. First, we point out that the Faddeev (Skyrme--Faddeev-Niemi) model can be induced through the gauge-invariant vacuum condensate of mass dimension two from SU(2) Yang-Mills theory. Second, we obtain the glueball mass spectrum by performing the collective coordinate quantization of the topological knot soliton in the Faddeev model. Third, we demonstrate that a relationship between the glueball mass and the gluon mass is obtained, since the gauge-invariant gluon mass is also induced from the relevant vacuum condensate. Finally, we determine physical values of two parameters in the Faddeev model and give an estimate of the relevant vacuum condensation in Yang-Mills theory. Our results indicate that the Faddeev model can play the role of a low-energy effective theory of the quantum SU(2) Yang-Mills theory.Comment: 17 pages, 2 figures, 3 tables; a version accepted for publication in J. Phys. A: Math. Gen.; Sect. 2 and sect. 5 (old sect. 4) are modified. Sect. 4, Tables 1 and Table 3 are adde

    Nonadiabatic generation of coherent phonons

    Get PDF
    The time-dependent density functional theory (TDDFT) is the leading computationally feasible theory to treat excitations by strong electromagnetic fields. Here the theory is applied to coherent optical phonon generation produced by intense laser pulses. We examine the process in the crystalline semimetal antimony (Sb), where nonadiabatic coupling is very important. This material is of particular interest because it exhibits strong phonon coupling and optical phonons of different symmetries can be observed. The TDDFT is able to account for a number of qualitative features of the observed coherent phonons, despite its unsatisfactory performance on reproducing the observed dielectric functions of Sb. A simple dielectric model for nonadiabatic coherent phonon generation is also examined and compared with the TDDFT calculations.Comment: 19 pages, 11 figures. This is prepared for a special issue of Journal of Chemical Physics on the topic of nonadiabatic processe
    • …
    corecore